首页> 外文OA文献 >WeText: Scene Text Detection under Weak Supervision
【2h】

WeText: Scene Text Detection under Weak Supervision

机译:WeText:弱监督下的场景文本检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The requiring of large amounts of annotated training data has become a commonconstraint on various deep learning systems. In this paper, we propose a weaklysupervised scene text detection method (WeText) that trains robust and accuratescene text detection models by learning from unannotated or weakly annotateddata. With a "light" supervised model trained on a small fully annotateddataset, we explore semi-supervised and weakly supervised learning on a largeunannotated dataset and a large weakly annotated dataset, respectively. For theunsupervised learning, the light supervised model is applied to the unannotateddataset to search for more character training samples, which are furthercombined with the small annotated dataset to retrain a superior characterdetection model. For the weakly supervised learning, the character searching isguided by high-level annotations of words/text lines that are widely availableand also much easier to prepare. In addition, we design an unified scenecharacter detector by adapting regression based deep networks, which greatlyrelieves the error accumulation issue that widely exists in most traditionalapproaches. Extensive experiments across different unannotated and weaklyannotated datasets show that the scene text detection performance can beclearly boosted under both scenarios, where the weakly supervised learning canachieve the state-of-the-art performance by using only 229 fully annotatedscene text images.
机译:大量带注释的训练数据的需求已成为各种深度学习系统的常见约束。在本文中,我们提出了一种弱监督场景文本检测方法(WeText),该方法通过从未注释或弱注释数据中学习来训练健壮且准确的场景文本检测模型。通过在完全注释的小型数据集上训练的“轻型”监督模型,我们分别在大型无注释数据集和大型弱注释数据集上探索了半监督和弱监督学习。对于无监督学习,将光监督模型应用于无注释数据集以搜索更多的字符训练样本,然后将其与小的注释数据集进一步组合以重新训练高级字符检测模型。对于弱监督学习,字符搜索由单词/文本行的高级注释指导,这些注释/文本行已广泛使用并且也更易于编写。此外,我们通过采用基于回归的深度网络来设计统一的场景特征检测器,从而大大缓解了大多数传统方法中普遍存在的错误累积问题。在不同的未注释和弱注释的数据集上进行的广泛实验表明,在两种情况下,场景文本检测性能都可以得到明显提高,其中,仅使用229个完全注释的场景文本图像,弱监督学习就可以实现最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号